Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Neurology ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2233771

ABSTRACT

BACKGROUND AND OBJECTIVES: Declines in stroke admission, intravenous thrombolysis, and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the impact of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), intravenous thrombolysis (IVT), and mechanical thrombectomy over a one-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020). METHODS: We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, intravenous thrombolysis treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases. RESULTS: There were 148,895 stroke admissions in the one-year immediately before compared to 138,453 admissions during the one-year pandemic, representing a 7% decline (95% confidence interval [95% CI 7.1, 6.9]; p<0.0001). ICH volumes declined from 29,585 to 28,156 (4.8%, [5.1, 4.6]; p<0.0001) and IVT volume from 24,584 to 23,077 (6.1%, [6.4, 5.8]; p<0.0001). Larger declines were observed at high volume compared to low volume centers (all p<0.0001). There was no significant change in mechanical thrombectomy volumes (0.7%, [0.6,0.9]; p=0.49). Stroke was diagnosed in 1.3% [1.31,1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82,2.97], 5,656/195,539) of all stroke hospitalizations. DISCUSSION: There was a global decline and shift to lower volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared to the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year. TRIAL REGISTRATION INFORMATION: This study is registered under NCT04934020.

2.
J Stroke ; 24(2): 256-265, 2022 05.
Article in English | MEDLINE | ID: covidwho-1893262

ABSTRACT

BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.

3.
Neurol Sci ; 43(7): 4061-4068, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1763365

ABSTRACT

BACKGROUND: It has been reported that acute stroke services were compromised during COVID-19 due to various pandemic-related issues. We aimed to investigate these changes by recruiting centers from different countries. METHODS: Eight countries participated in this cross-sectional, observational, retrospective study by providing data from their stroke data base. We compared 1 year before to 1 year during COVID-19 as regards onset to door (OTD), door to needle (DTN), door to groin (DTG), duration of hospital stay, National Institute of Health Stroke Scale (NIHSS) at baseline, 24 h, and at discharge as well as modified Rankin score (mRS) on discharge and at 3 months follow-up. RESULTS: During the pandemic year, there was a reduction in the number of patients, median age was significantly lower, admission NIHSS was higher, hemorrhagic stroke increased, and OTD and DTG showed no difference, while DTN time was longer, rtPA administration was decreased, thrombectomy was more frequent, and hospital stay was shorter. mRS was less favorable on discharge and at 3 months. CONCLUSION: COVID-19 showed variable effects on stroke services. Some were negatively impacted as the number of patients presenting to hospitals, DTN time, and stroke outcome, while others were marginally affected as the type of management.


Subject(s)
COVID-19 , Stroke , Cross-Sectional Studies , Humans , Retrospective Studies , Stroke/drug therapy , Stroke/therapy , Thrombolytic Therapy , Time-to-Treatment , Treatment Outcome
4.
Stroke ; 52(9): 3045-3053, 2021 08.
Article in English | MEDLINE | ID: covidwho-1325217

ABSTRACT

In the spring of 2021, reports of rare and unusual venous thrombosis in association with the ChAdOx1 and Ad26.COV2.S adenovirus-based coronavirus vaccines led to a brief suspension of their use by several countries. Thromboses in the cerebral and splanchnic veins among patients vaccinated in the preceding 4 weeks were described in 17 patients out of 7.98 million recipients of the Ad26.COV2.S vaccine (with 3 fatalities related to cerebral vein thrombosis) and 169 cases of cerebral vein thrombosis among 35 million ChAdOx1 recipients. Events were associated with thrombocytopenia and anti-PF4 (antibodies directed against platelet factor 4), leading to the designation vaccine-induced immune thrombotic thrombocytopenia. Unlike the related heparin-induced thrombotic thrombocytopenia, with an estimated incidence of <1:1000 patients treated with heparin, and a mortality rate of 25%, vaccine-induced immune thrombotic thrombocytopenia has been reported in 1:150 000 ChAdOx1 recipients and 1:470 000 Ad26.COV.2 recipients, with a reported mortality rate of 20% to 30%. Early recognition of this complication should prompt testing for anti-PF4 antibodies and acute treatment targeting the autoimmune and prothrombotic processes. Intravenous immunoglobulin (1 g/kg for 2 days), consideration of plasma exchange, and nonheparin anticoagulation (argatroban, fondaparinux) are recommended. In cases of cerebral vein thrombosis, one should monitor for and treat the known complications of venous congestion as they would in patients without vaccine-induced immune thrombotic thrombocytopenia. Now that the Ad26.COV2.S has been reapproved for use in several countries, it remains a critical component of our pharmacological armamentarium in stopping the spread of the human coronavirus and should be strongly recommended to patients. At this time, the patient and community-level benefits of these two adenoviral vaccines vastly outweigh the rare but serious risks of vaccination. Due to the relatively low risk of severe coronavirus disease 2019 (COVID-19) in young women (<50 years), it is reasonable to recommend an alternative vaccine if one is available. Ongoing postmarketing observational studies are important for tracking new vaccine-induced immune thrombotic thrombocytopenia cases and other rare side effects of these emergent interventions.


Subject(s)
COVID-19 , Cerebral Veins , Thrombocytopenia , Thrombosis , Vaccines , Female , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL